Novel role of base excision repair in mediating cisplatin cytotoxicity.
نویسندگان
چکیده
Using isogenic mouse embryonic fibroblasts and human cancer cell lines, we show that cells defective in base excision repair (BER) display a cisplatin-specific resistant phenotype. This was accompanied by enhanced repair of cisplatin interstrand cross-links (ICLs) and ICL-induced DNA double strand breaks, but not intrastrand adducts. Cisplatin induces abasic sites with a reduced accumulation in uracil DNA glycosylase (UNG) null cells. We show that cytosines that flank the cisplatin ICLs undergo preferential oxidative deamination in vitro, and AP endonuclease 1 (APE1) can cleave the resulting ICL DNA substrate following removal of the flanking uracil. We also show that DNA polymerase β has low fidelity at the cisplatin ICL site after APE1 incision. Down-regulating ERCC1-XPF in BER-deficient cells restored cisplatin sensitivity. Based on our results, we propose a novel model in which BER plays a positive role in maintaining cisplatin cytotoxicity by competing with the productive cisplatin ICL DNA repair pathways.
منابع مشابه
Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR...
متن کاملNovel Role of Base Excision Repair (ber) in Mediating Cisplatin Cytotoxicity*
CYTOTOXICITY* Anbarasi Kothandapani, Venkata Srinivas Mohan Nimai Dangeti, Ashley R. Brown, Lauren A. Banze, Xiao-Hong Wang, Robert W. Sobol and Steve M. Patrick 1. Department of Biochemistry and Cancer Biology, University of Toledo – Health Science Campus, Toledo, OH 43614 2. Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburg, PA 15213 3. Univ...
متن کاملBase excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2'-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs.
Anticancer therapy with cisplatin and oxaliplatin is limited by toxicity and onset of tumor resistance. Both drugs form platinum-DNA cross-linked adducts, and cisplatin causes oxidative DNA damage including the 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesion. To assess oxidative DNA damage as a mechanism of cisplatin and oxaliplatin cytotoxicity, 8-oxodG-directed base excision repair was s...
متن کاملAtaxia Telangiectasia Mutated and Rad3 Related (ATR) Protein Kinase Inhibition Is Synthetically Lethal in XRCC1 Deficient Ovarian Cancer Cells
INTRODUCTION Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excisio...
متن کاملIdentifying biomarkers for resistance to novel cisplatin analogues in human lung, breast and prostate cancers
Identifying Biomarkers for Resistance to Novel Cisplatin Analogues in Human Lung, Breast and Prostate Cancers by Becky Michelle Hess Dr. Bryan L. Spangelo, Examination Committee Chair Professor of Chemistry University of Nevada, Las Vegas Cisplatin is a common therapeutic agent used in cancer treatment. Unfortunately, resistance to cisplatin in addition to severe side effects limits its use in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 16 شماره
صفحات -
تاریخ انتشار 2011